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Abstract- The effect of segmented polyurethane coating on 
thrombus formation was quantitatively studied under shear 
field in vitro.  The Couette-type of shear rate was applied to the 
canine blood between the concave and the convex cones.  
Variation was made about materials of cones: 
Polymethyl-methacrylate, polyvinyl chloride, and polyvinyl 
chloride coated with segmented polyurethane.  The study 
shows that the clotting time extends on the segmented 
polyurethane especially at the higher shear rates, although the 
clot ratio is in the same level as that of without coating.  This 
clotting time extension should regulate thrombus formation 
under pulsatile shear flow. 
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I. INTRODUCTION 
 
The clot plays an important role to repair ruptured blood 
vessel walls.  It consists of platelets and coagulants.  It 
interrupts, on the other hand, blood flow, when it plugs the 
blood flow path.  Especially, in artificial vessels, clot 
formation has to be delicately regulated between keeping 
stable connection to natural vessels and inhibiting formation 
of plugs.  Many factors control the dynamic balance 
between the formation and removal of clots.  Previous 
studies show that segmented polyurethane coating decreases 
clot formation to some extent [1].  The mechanism to 
prevent clot formation is under discussion, because the effect 
changes with flow condition. 

General clot tests in vitro are on clotting time in a test tube 
[2].  Clot formation in flow condition should be tested 
under quantitatively controlled shear field [3]. 

In the present study, both the clotting time and the clotting 
ratio have simultaneously been measured with concave 
convex Couette flow system in vitro. 
 

II. METHODOLOGY 
 

The Couette type of shear rate was applied to the blood 
between the concave and convex cones.  The parts of 
concave and convex cones are demountable, and the axis of 
rotation is quickly adjusted with tapered connecting cylinder 

(Fig. 1).  The apex angle (2B) of convex cone is 115 degree. 
Uniform shear rate (G (1/s)) is applied between the 

concave and convex cones. 
 

G = N r/L = {N y sin(B)}/(y P) = {N sin(B)}/P   (1) 
 
where N is angular velocity (rad/s) of the concave cone, P is 
angle (rad) between the concave and convex cones, L is the 
gap between two circular cones, and y is the distance 
between the apex and the shearing point.  The shear rate is 
constant regardless of the distance (r) from rotating axes.  
Shear rate is controlled between 100 and 1000 1/s in 
proportion to the rotating speed of concave cone. 

Variation was made in material of the concave and convex 
cones; polymethyl-methacrylate, polyvinyl chloride, 
polyvinyl chloride coated with segmented polyurethane.  
Combination was selected so that both materials of concave 
and convex cones are the same.  The cones coated with 
segmented polyurethane were for the single use, because the 
surface condition might change after exposure to blood. 
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Fig. 1.  Concave and convex cones. 
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One milliliter blood was drained without anticoagulants 
from the jugular vein of the mongrel dog weighed 15 kg.  
Immediately after drainage, the blood sample was sheared 
between the concave and convex cones at 25 degrees C, 
while the viscous torque between two cones was 
continuously measured (Fig. 2).  The viscous torque  
increases with clot formation.  After several minutes of 
stable torque tracings, rotation of the concave cone was 
stopped and clots were macroscopically observed. 
 

III. RESULTS 
 

Fig. 2 exemplifies torque tracings.  The viscous torque 
increases with clot formation from T to T'.  The clotting 
time (t) was measured at torque tracings, and is shown in 
relation to shear rates in Figs 4, 6, 8.  These figures show 
that the clotting time decreases with the shear rate both on 
polymethyl-methacrylate and on polyvinyl chloride.  The 
tendency is remarkable on polyvinyl chloride: from six to 
two minutes (Fig. 6). 

The clot ratio (R) was calculated from T and T' (2). 
 

R = 1 - T/T'                    (2) 
 
The clot ratio is zero, when the torque does not increase (T' = 
T).  It becomes 0.5, when the torque increases to doubled 
value (T' = 2T).  It approaches unity, the greater the torque 
becomes (T' >> T). 

Figs. 3, 5, 7 show the clot ratio as a function of the shear 
rate.  The clot ratio decreases with the shear rate, and it 
becomes smaller than 0.5 at the shear rates higher than 400 
1/s (Figs. 3, 5).  

On polyvinyl chloride coated with segmented polyurethane, 
on the other hand, the clotting time keeps the same level of 
six minutes even at higher shear rates (Fig. 8), although the 
clot ratio decreases with the shear rate (Fig. 7). 
 

IV. DISCUSSION 
 

Segmented polyurethane, which is used in the present 
study, has been applied to coat the inner surface in blood 
pumps in artificial hearts.  Its effect to prevent clot 
formation has been reported in previous studies [1].  The 
morphology of clot formed on the surface, however, depends 
on blood flow conditions. 

The most of test methods for anti-coagulate property of 

Fig. 4  Clotting time vs. shear rate
on plymethylmethacrylate
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Fig. 2  Torque tracings 

Fig. 3  Clot ratio vs. shear rate on
polymethylmethacrylate
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materials measure the coagulation time [2].  It has been 
considered that the extension of clotting time relates directly 
to anti-coagulation property.  The present study, on the 
other hand, shows that clot ratio does not relate to clotting 
time in the shear field.  At the lower shear rates, the clot 
ratio increases, while the clotting time extends. 

The clotting time extends on segmented polyurethane.  Its 
extension is remarkable at higher shear rates.  The clot ratio 
on polyvinyl chloride coated with segmented polyurethane, 
on the other hand, is in the same level as that on polyvinyl 
chloride without coating. 

Segmented polyurethane coating should be effective to 
prevent clot formation especially in pulsatile flow [3], when 
the blood is washed out periodically before formation of 
clots in the extended clotting time.  In the steady flow, on 

the other hand, segmented polyurethane coating may not 
have enough effect to prevent clot formation at the lower 
shear rates.  The material, which extends the clotting time, 
has the considerable effect to prevent thrombus formation in 
the pulsatile pumps or in the arterial prostheses, but not in 
the venous prostheses. 
 

V. CONCLUSION 
 

The clotting time was evaluated separately from the clot 
ratio under shear fields in vitro.  The study shows that the 
clotting time extends on the segmented polyurethane coating 
especially at the higher shear rates, although the clot ratio is 
in the same level as that of without coating.  This clotting 
time extension regulates thrombus formation under the 

Fig. 7  Clot ratio vs. shear rate on
polyurethane
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Fig. 8  Clotting time vs. shear rate
on polyurethane
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Fig. 5  Clot ratio vs. shear rate on
polyvinyl chloride
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Fig. 6  Clotting time vs. shear rate
on polyvinyl chloride
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pulsatile shear flow. 
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